A comprehensive dose reconstruction methodology for former rocketdyne/atomics international radiation workers.

نویسندگان

  • John D Boice
  • Richard W Leggett
  • Elizabeth Dupree Ellis
  • Phillip W Wallace
  • Michael Mumma
  • Sarah S Cohen
  • A Bertrand Brill
  • Bandana Chadda
  • Bruce B Boecker
  • R Craig Yoder
  • Keith F Eckerman
چکیده

Incomplete radiation exposure histories, inadequate treatment of internally deposited radionuclides, and failure to account for neutron exposures can be important uncertainties in epidemiologic studies of radiation workers. Organ-specific doses from lifetime occupational exposures and radionuclide intakes were estimated for an epidemiologic study of 5,801 Rocketdyne/Atomics International (AI) radiation workers engaged in nuclear technologies between 1948 and 1999. The entire workforce of 46,970 Rocketdyne/AI employees was identified from 35,042 Kardex work histories cards, 26,136 electronic personnel listings, and 14,189 radiation folders containing individual exposure histories. To obtain prior and subsequent occupational exposure information, the roster of all workers was matched against nationwide dosimetry files from the Department of Energy, the Nuclear Regulatory Commission, the Landauer dosimetry company, the U.S. Army, and the U.S. Air Force. Dosimetry files of other worker studies were also accessed. Computation of organ doses from radionuclide intakes was complicated by the diversity of bioassay data collected over a 40-y period (urine and fecal samples, lung counts, whole-body counts, nasal smears, and wound and incident reports) and the variety of radionuclides with documented intake including isotopes of uranium, plutonium, americium, calcium, cesium, cerium, zirconium, thorium, polonium, promethium, iodine, zinc, strontium, and hydrogen (tritium). Over 30,000 individual bioassay measurements, recorded on 11 different bioassay forms, were abstracted. The bioassay data were evaluated using ICRP biokinetic models recommended in current or upcoming ICRP documents (modified for one inhaled material to reflect site-specific information) to estimate annual doses for 16 organs or tissues taking into account time of exposure, type of radionuclide, and excretion patterns. Detailed internal exposure scenarios were developed and annual internal doses were derived on a case-by-case basis for workers with committed equivalent doses indicated by screening criteria to be greater than 10 mSv to the organ with the highest internal dose. Overall, 5,801 workers were monitored for radiation at Rocketdyne/AI: 5,743 for external exposure and 2,232 for internal intakes of radionuclides; 41,169 workers were not monitored for radiation. The mean cumulative external dose based on Rocketdyne/AI records alone was 10.0 mSv, and the dose distribution was highly skewed with most workers experiencing low cumulative doses and only a few with high doses (maximum 500 mSv). Only 45 workers received greater than 200 mSv while employed at Rocketdyne/AI. However, nearly 32% (or 1,833) of the Rocketdyne/AI workers had been monitored for radiation at other nuclear facilities and incorporation of these doses increased the mean dose to 13.5 mSv (maximum 1,005 mSv) and the number of workers with >200 mSv to 69. For a small number of workers (n=292), lung doses from internal radionuclide intakes were relatively high (mean 106 mSv; maximum 3,560 mSv) and increased the overall population mean dose to 19.0 mSv and the number of workers with lung dose>200 mSv to 109. Nearly 10% of the radiation workers (584) were monitored for neutron exposures (mean 1.2 mSv) at Rocketdyne/AI, and another 2% were monitored for neutron exposures elsewhere. Interestingly, 1,477 workers not monitored for radiation at Rocketdyne/AI (3.6%) were found to have worn dosimeters at other nuclear facilities (mean external dose of 2.6 mSv, maximum 188 mSv). Without considering all sources of occupational exposure, an incorrect characterization of worker exposure would have occurred with the potential to bias epidemiologic results. For these pioneering workers in the nuclear industry, 26.5% of their total occupational dose (collective dose) was received at other facilities both prior to and after employment at Rocketdyne/AI. In addition, a small number of workers monitored for internal radionuclides contributed disproportionately to the number of workers with high lung doses. Although nearly 12% of radiation workers had been monitored for neutron exposures during their career, the cumulative dose levels were small in comparison with other external and internal exposure. Risk estimates based on nuclear worker data must be interpreted cautiously if internally deposited radionuclides and occupational doses received elsewhere are not considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of internal radiation exposure on cancer mortality in nuclear workers at Rocketdyne/Atomics International.

We examined the effects of chronic exposure to radionuclides, primarily uranium and mixed-fission products, on cancer mortality in a retrospective cohort study of workers enrolled in the radiation-monitoring program of a nuclear research and development facility. Between 1950 and 1994, 2,297 workers were monitored for internal radiation exposures, and 441 workers died, 134 (30.4%) of them from ...

متن کامل

Variation of annual effective dose from external ionizing radiation among radiation workers of Bahawalpur Institute of Nuclear Medicine and Oncology (BINO), Pakistan

Background: The aim of the study was to analyze the effective dose record of occupationally exposed radiation workers at Bahawalpur Institute of Nuclear Medicine and Oncology department. Materials and Methods: Annual effective doses of occupationally exposed workers were measured by film badge dosimetry by sending the dosimeters to Radiation Dosimetry Laboratory (RDL), Pakistan Institute of Nuc...

متن کامل

Assessment of whole-body occupational radiation exposures in nuclear medicine practices of Bangladesh during 2010-2014

Introduction: Occupational exposure to ionizing radiation due to medical activities (both diagnostic and therapeutic procedures) has increased sharply in recent years. Among the occupationally exposed workers in these fields, those most affected by this increased exposure to ionizing radiation are nuclear medicine workers. In this study, annual average effective dose, annual collective effectiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Health physics

دوره 90 5  شماره 

صفحات  -

تاریخ انتشار 2006